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REAL EXTREME R&D OPTIONS 
 
 
 
 
ABSTRACT  
 
Clinical R&D is a highly uncertain venture where experiments achieve successful 

outcomes on an extraordinarily rare basis. Just one successful product could change the 

future of a company; the stage to discovery can often be an invaluable or disastrous 

experience. Developers should balance probability analysis against the potential profits 

that may result. With that objective, we propose extreme-value theory (EVT) as an 

extension to the standard perpetual American call option. We develop an R&D option 

model when discoveries follow extreme-value distributions. We examine the optimal 

trigger that justifies an investment, the effect of frequency in discoveries on real option 

values, the roles of tail-shape parameters of discovery distributions, and compare values 

to invest with models governed by other distributions. We find that effective premiums 

for options based on extreme-distributions should be lower (and triggers for optimal 

investment higher) than those governed by normally distributed underlying values, with 

otherwise similar parameters. The sensitivities of option values and triggers to changes in 

the shape parameter of the extreme distributions are simulated, and show interesting, 

perhaps counter-intuitive results. 

 
 
 
JEL Classification Code: D81, G31, O32 
Keywords: R&D, real options, extreme value theory, probability density functions.  
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1. Introduction 
 
 

Rare events in real options have been predominately described by stochastic processes 

such as Poisson and jump processes after Merton’s (1976) work. In R&D literatures, rare 

events are frequently referred to as catastrophe or success. Schwartz and Moon (2000) 

assumed that asset value uncertainty and cost uncertainty are standard geometric 

Brownian diffusion processes, but they also acknowledge the possibility of a catastrophic 

failure represented by a Poisson process. Weeds (2002) considered discovery to occur 

following a Poisson distribution with a constant hazard rate in her competitive real option 

models. This hazard rate is independent of the duration of the research and number of 

rival firms which are rushing to find an identified compound to patent.  

 

More recently, new studies used Extreme Value Theory (EVT) as an alternative to the 

Poisson process in modelling rare events. An example is Poon, Rockinger and Tawn 

(2004) analysis of rare events in the tails of return distributions. They modelled extreme 

values in different aspects of financial markets which can usually be controlled by a 

Poisson jump process in place of rare events. While extreme value theory is relatively 

new in application to real options, it has been used in value-at-risk (VAR) issues in 

insurance and risk management3. Together with extensive literature on non-Gaussian 

pricing models that involve high moments like Lévy processes, they commonly 

                                                 
3 See Embrechts, Klüppelberg and Mikosch (2003) for treatment of extreme value methodology for random 
walk models, continuous-time stochastic processes and compound Poisson processes in both insurance and 
finance applications.  
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concentrate on upper tail ends of distributions which have a leptokurtic nature that decays 

more like a power law function, as compared to a normal bell curve4.  

 

Extreme value methodologies seem to be appropriate for valuing R&D projects due to the 

low frequency of rare discoveries and potential upside profits in a winner-takes-all 

outcome. The value of an R&D project at its initial stages of development can be rightly 

dependent on its prospect of a blockbuster product. One successful product or clinical 

compound could change the fortune of an R&D company. In the pharmaceutical industry, 

such events are rare and extreme. Myers and Howe (1997) pointed out that even as a drug 

enters into the market, there is a ten percent probability of an extreme popularity. So we 

model option pricing of R&D activities using extreme value theory (EVT).  

 

Dahan and Mendelson (2001) were among the first to apply EVT to option pricing in 

innovation. They value abandonment options of concept tests when profits follow 

extreme patterns. They found that the optimal number of tests is related to cost of 

production for all three forms of extreme distribution. Rhys and Tippett (2003) also 

derived a closed-form solution for their value functions in the case when net present 

values follow a different class of probability distribution. They used a general class of 

Student distribution, which also has similar fat tail-end effects exhibited by extreme 

distributions. Brach and Paxson (2001) simulated skewed tail returns that look like 

extreme distributions by using the Merton (1976) jump process to model hot gene 

discovery.  

                                                 
4 See Schoutens (2003) on introduction to option pricing using Lévy processes.  
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We develop a real option model based on extreme distributions, where our project values 

for a compound discovery follow a standard stochastic process. Then, we allow our 

expected value to follow some extreme density functions and derive our function values 

for the option to invest in a R&D project. We consider perpetual American call options 

for all of our models. 

 

Our approach is different from Dahan and Mendelson (2001). Firstly, we are looking at 

the option to invest, hence the firm’s opportunity to create success with its discoveries 

and its ensuing rewards. Secondly, our project value x follows a stochastic flow rate 

characterised by random walk behaviour.  

 

The remaining sections are organised as follows: Section 2 lays out some background on 

extreme value theory. Section 3 includes description of extreme model in valuing 

perpetual call options. Section 4 shows results of sensitivity analyses of value functions. 

We also derive our partial derivatives of the value functions to changes in selected 

parameters and variables in this section. Section 5 concludes.  
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2. Extreme Results in R&D   

 

In R&D business, a big ‘transforming’ success is hard to come by so project values 

frequently show extremity characteristics. We ask what is the project’s option value and 

when the firm should enter to invest in the project, given the underlying project value is 

not normally distributed. In this section, we will introduce some extreme value theories.  

 

The mathematical foundation of Extreme Value Theory (EVT) is a class of extreme value 

limit laws first derived by Fisher and Tippett (1928) and later by Gnedenko (1943). The 

summary of Fréchet, Weibull and Gumbel distributions can be summarised below: 

 

Table 1 – Summary of Three Distributions 
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where α is the shape parameter, γ is the scale parameter, 0X is the location parameter and 

[ ].Γ    is incomplete gamma function. x > 0, 0  x0,   ,20 0 ≥>≤< γα .  
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The Fréchet distribution generally has a longer and thinner tail on the right hand corner of 

the curve. It is also negatively skewed. It is not upper-bounded in its tail. This behaviour 

of the cash flows is particularly applicable to R&D activity. Consider a R&D compound 

with a great upside uncertainty as possible blockbuster drug. The tail-end pattern of 

Fréchet distribution can reflect the opportunistic return in the rare event of a discovery of 

an amazing drug. Biotechnology firms then can value their R&D projects given such 

extremist assumptions. This might give the management new insights into investment 

decisions as paths of events are assumed not to follow the normal distribution.        

 

The Weibull distribution has an upper bound and hence a cap on the upside profit 

potential of the new drug. Hence the product does not have unlimited profits, which are 

prevalent with Fréchet distribution. We can use Weibull distribution if the management 

has a target profit to achieve and this target is regarded as a rare occurrence. 

Alternatively, it can also be used to check what value the project will be if they suffer an 

unlimited loss. This is because Weibull distribution has fat tails on its negative ends. 

However, this is not really our interest in this paper as we are concerned about 

maximising R&D returns and not minimising R&D losses.  

 

In many industries, there seem to be no boundaries on gross profit potential of a product. 

However profit coming from outside the central range of the distribution seems extremely 

unlikely. Gumbel distribution might be appropriate where there can be unlimited gains or 

losses in projects. 
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Figure 1 shows an example of the three extreme-value distributions to profits, normalised 

to zero mean and unit variance.  

Figure 1 

Densities of the Three Extreme Value Distributions
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Densities for the Three Extreme Value Distributions  

 

3. The Model 

Consider an R&D project to investigate and discover new and valuable genes. The 

project takes a certain amount of time to complete and for simplicity, we assume 

perpetuity here. Assume that the project has a constant total cost to completion, K. The 

number of ‘prize’ genes at the end of R&D project is denoted by n. When the project is 

successfully completed, the firm receives a payoff (e.g., a new compound to be sold to 

another external biotech) whose value, V, is determined as the present value of expected 

future net cash flows from the completed project. F(V) is the value of investment 

opportunity we derived and we referred to as the project value.  
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The estimated value of the asset received on completion of the project V, is assumed to 

follow the stochastic process: 

 

ωσµ VdVdtdV +=                  (1) 

 

where µ is the drift parameter, σ is the standard deviation and dω  is the increment of a 

standard Wiener process. Schwartz and Moon (2000) highlighted the value of µ, the drift 

component, which can be positive or negative in R&D programs due to various reasons. 

A negative drift could represent the opportunity cost of delaying the investment. Because 

we aim to value the upside of R&D returns, we shall assume µ > 0 and σ > 0. The 

estimated asset value can be interpreted as the present value of the expected net cash 

flows to the project once the investment is completed, discounted at a risk-adjusted 

discount rate.  

3.1 Value of Investment Opportunity 

Let F(V) represent the value of the investment opportunity. This value function of 

opportunity to invest for the firm must satisfy the following Bellman equation:  

 

( ) ( )[ ]VdFEdtVrF =                                   (2) 

where r is the risk-free rate. 

Using Ito’s lemma, we obtain the following ordinary differential equation: 

 

( ) ( ) ( ) 0
2
1 '''22 =−+ VrFVVFVFV µσ                   (3) 
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This is Euler’s equation which has the general solution of: 

 

21)( ββ BVAVVF +=              (4) 

 

where A and B are constants, β1 and β2 are: 
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Our β has to be positive and hence 2β  is eliminated and we will use 1β .  We assume that 

if our variable, V reaches zero, our investment opportunity naturally falls to zero, and so 

we can obtain the following boundary condition: 

 

0)0( =F                  (7) 

 

Since as the state variable goes to zero, the function has to decrease, B in equation (4) has 

to be equal to zero, hence our solution becomes:      

 

1)( βAVVF =                  (8) 

 



 11 

This solution must also satisfy the boundary conditions of value-matching and smooth-

pasting. Value-matching condition will ensures that our value function follows the 

discounted expected value after an investment point. Smooth-pasting condition as the 

name suggested will smooth out our value function. The two conditions are stated below: 

 

( )

( ) ( ) (10)                                                                                                               1  

(9)                                                                                                             )(

*'*'

**

==

−=

VZVF

KVZVF

 

 

3.2 Present Values 

At this point, we depart from conventional approach of using Poisson distribution to 

estimate arrival rates of new drugs. We assume that in a pre-clinical environment, new 

genes or compounds are discovered following an extreme distribution. Hence, n number 

of discoveries in this case will follow an extreme distribution and it can be denoted by 

( )nF  where F is an extreme probability density function. The rate of discovery is not a 

focus here; we predict the number of discoveries adjusting to a probability throughout the 

life of the R&D process. The R&D process will have independent discovery outcomes, 

denoted by Ni, I = 1, 2,…n, that are observed at the conclusion of the test. The in  are    

i.i.d. random variables distributed as a random variable N with probability distribution 

F(n) i.e. ( ) { }nNnF ≤= Pr .5 Discovery outcomes are directly related to expected value of 

                                                 
5  n can be an integer in a discrete process or rational number in a continuous process, representing 
‘blockbuster status’ or its equivalent. niN i ...2,1, =    
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project after completion. Our expected asset values will follow the probabilistic pattern of 

the discoveries and is given by, 

 

( ) ( )NfVVZ .=               (11) 

 

 The NPV of the project would thus be 

 

( ) KVZNPV −=                (12) 

 

The optimal investment rule would be to proceed with the investment if and only if 

present value is greater than initial capital outlay, i.e. NPV is positive. Not surprisingly, 

(12) appears like one of the boundary conditions needed to satisfy differential equation 

(3). 

3.3 Option to Invest 

As n follows a univariate Fréchet distribution (a class of distribution under family of 

extreme distribution), the probability density function will be denoted by: 
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where n0 is the location parameter of the distribution, γ is its scale parameter which varies 

monotonically with variance, and α is the tail-shape parameter. 
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The boundary between the continuation region and the stopping region is given by a 

critical value of the stochastic process or trigger point, V*. The optimal investment rule is 

found by solving for V*. If the state variable is smaller than the trigger, the optimal 

decision for the investor is not to invest, i.e. to continue in the continuation region. If it 

exceeds the trigger, then the investor should invest in the project.  

 

Applying equation (8) and (12) to our smooth pasting condition given by (9), we get  

 

( ) ( )

( )
( )

K

enn

VVA

KnfVVF

nn

−

�
�
�
�

�

	










�

�

−

=

−=

�
�
�

�
�
�
�

�

−+

α
γ

α

α
β αγ

01
0

**

**

            (12) 

where *V  is the optimal asset value of the project where the firm should be investing.  

 

The second condition, known as the value-matching condition, requires that the 

derivatives of the option value and present value match at the boundary: 
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Solving equations (12) and (13) and rearranging terms, we obtain A and *V as: 
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Putting equations (8), (12), (14) and (15) together we obtain the value function of the 

option as a function of asset value and number of discoveries as they following a Fréchet-

distributed probability: 
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This value function is the option to invest and is governed by three parameters that 

characterise the tail-end of Fréchet probability. Using a similar approach and 
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computation, we apply two other classes of extreme distributions to value our possible 

project discoveries. WeibullVF )(   and  GumbelVF )(  denote project values when R&D 

breakthroughs follow Weibull and Gumbel distributions respectively. A summary is 

shown in Table 2.   
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4. Results and Sensitivities 

Figure 2 illustrates the comparison of project values as discoveries follow in three 

different forms of distributions. All parameters are the same except for the shape 

parameter, α, which is endogenously different for each distribution because of their 

characteristic tail-ends.  

 

Figure 2 – Project Values As Function of Asset Values for Different Distributions 
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Fig 2 - The parameters are: σ = 10%, r = 9%, µ = 5%, K = 5, n0 = 0, n = 3, γ = 1, 

αFréchet = 1.5,  αWeibull = -2.   

 

The figures imply that our usual option to invest will increase as asset values increases. 

These option values are diminished by the extreme probabilistic tendencies to find new 

drugs at pre-clinical stages. Investment triggers are high and firms will have to wait for 

expected asset values to rise before it is optimal to invest. Hence these ‘extreme’ options 
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are out-of-the-money for ‘mega’ returns in R&D. Project values dominated by a Fréchet-

sort of pattern in discovery will generate the highest option values, given the parameters. 

This is evident from the fat and long tail-ends in Fréchet distribution. Project values from 

Weibull and Gumbel are also close reflection of their statistical distribution 

characteristics. Depending on the successes and failures of R&D unit in past researches, 

some firms might have distribution patterns that follow one of these three extreme 

scenarios.   

 

In Figure 3 we plot and compare the sensitivity of value functions to volatility.  

Sensitivities of Project Values to Value Volatility
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Fig 3 - The parameters are: V = 100, r = 9%, µ = 5%, K = 5, n0 = 0, n = 3, γ = 1, 

αFréchet = 1.5,  αWeibull = -2.   

As expected, our project values for all distributions increase with asset volatility. Fréchet 

has the highest sensitivity given the parameters. In the next Table, we will compare value 

volatility to our trigger values. We include values from a GBM model that does not 

follow any specific distribution for present values and one that uses Poisson distribution.  
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Table 3 – Sensitivities of Trigger Functions to Value Volatilities 

σσσσ    V*F V*W V*G V*N V*P 
0.00 0.00 0.00 0.00 0.00 0.00 
0.05 145.20 173.89 243.32 1.46 187.98 
0.10 154.99 185.61 259.72 3.22 200.66 
0.15 169.88 203.44 284.68 5.59 219.93 
0.20 188.97 226.30 316.66 8.95 244.65 
0.25 211.77 253.60 354.87 13.83 274.17 
0.30 238.08 285.11 398.97 21.03 308.23 
0.35 267.83 320.75 448.83 31.79 346.75 
0.40 301.04 360.51 504.47 48.08 389.74 
0.45 337.72 404.44 565.94 73.00 437.23 
0.50 377.93 452.60 633.33 111.61 489.29 
0.55 421.72 505.03 706.71 172.15 545.98 
0.60 469.13 561.81 786.16 268.31 607.36 

 

Table 3 - The parameters are: V = 100, r = 9%, µ = 5%, K = 5, n0 = 0, n = 3, γ = 1, 

αFréchet = 1.5,  αWeibull = -2, λ = 1.  V*F, V*W and V*G symbolise trigger functions for 

Fréchet, Weibull and Gumbel. V*N refers to value triggers for call options with 

discoveries following a normal distribution. V*P is a trigger when discovery value is 

multiplied by a Poisson-distributed pattern in discovery and λ is size of Poisson jump. 

 

In general, we can see that our trigger values increase with volatility. The ‘extreme-led’ 

triggers are larger than a process with Gaussian-expected R&D success, given these 

parameters. This implies that extreme distributions can cause firms to invest much later 

by rule of optimality. This is because firms that enjoy n number of discovery successes 

are rare and they should wait for expected asset values to rise higher before taking action 

to invest. Interestingly, Poisson-induced trigger values are above those of Fréchet and 

Weibull. It is possible that Poisson jumps have greater intensity on R&D outcomes. The 

term ‘all or nothing’ is more applicable to Poisson jump process. It also shows that 
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Poisson-distributed results are more reactive to changes in volatility than extreme 

distributions. Of the three extreme distributions, Fréchet has the lowest investment 

threshold and this could be due to the tail-end of Fréchet distribution decaying faster per 

unit time. 

 

 Figure 4 plots the graph shown in Table 3.   

Figure 4 – Sensitivities of Trigger Values to Volatility 
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Figure 4 - The parameters are: V = 100, r = 9%, µ = 5%, K = 5, n0 = 0, n = 3, γ = 1, 

αFréchet = 1.5,  αWeibull = -2, λ = 1 

 

Figure 5 exemplifies how the number of discoveries can affect option values. At first 

sight, it appears interesting that the value of investment opportunity actually decreases 

with an increase in number of discoveries. This is not unusual since our discoveries are 

predicted by such extreme distributions and they imply that it is very rarely possible that 
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one discovers a huge number of breakthroughs at one go. Because this is unrealistic, 

value of this investment opportunity will slide to zero as number of discoveries approach 

infinity.   

 

Figure 5 – Sensitivities of Project Values to Number of Discoveries  
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Figure 5 - The parameters are: V = 100, σ = 10%,   r = 9%, µ = 5%, k = 5, n0 = 0, γ = 1, 

αFréchet = 1.5,  αWeibull = -2. 

 

As the absolute value of the tail-shape parameter, α increases, the Fréchet and Weibull 

distribution converge to Gumbel. This is shown in Figure 6. This is consistent with 

extreme value theory put up Von Mises (1936)6. Figure 6 shows that both Fréchet and 

Weibull project values converge as α increases. This will also have a converging effect 

                                                 
6 Von Mises (1936) stated that the three extreme distributions can be unified under a single continuous 

model ( )
α

α

−

�
�

�
�
�

� +−
=

x

exF
1

 where the distribution is Fréchet is α > 0, Weibull if α < 0 and Gumbel 
as ∞→α .   
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on trigger values (see Figure 4). Also the project values appear to be highest between 1 < 

α < 2. Samorodnistsky and Taqqu (1994) noted these as stable α models. The slower 

α is, the slower the decay of the distribution at tail-end and the heavier the tails. Hence 

our option values are increasing between these α levels.  

 

Figure 6 – Sensitivities of Project Values to Shape Parameter, αααα 
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Figure 4 - The parameters are: V = 100, σ = 10%, r = 9%, µ = 5%, k = 5, n0 = 0, n = 3, γ 

= 1. 

 

Thus the upper-tailed shape of the discovery distribution, as parameterised by α, plays a 

pivotal role in determining the optimal investment policy and the project values that 

result from that policy.  

 

The sensitivity of the option value F(V), to small changes in its determining variables can 

shed further light on the impact that extreme distributions can have on option values. We 
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begin by computing the most common, option delta, which is the derivative of the option 

value F(V) with respect to the expected asset value of the project. The closed-form 

solutions of the deltas of the extreme distributions are summarised in the next table. 

 

Table 4 - Value of Delta Functions 

Deltas 
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Figure 7 – Value of Delta for Options Following Extreme Distributions. 
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Figure 7 - The parameters are: σ = 10%, r = 9%, µ = 5%, k = 5, n0 = 0, n = 3, γ = 1, 

αFréchet = 1.5,  αWeibull = -2.   
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Figure 7 contains the option delta for three different modes of discovery distributions. As 

expected, our delta values are positive and increasing with values. Furthermore it shows 

that the option delta is near to zero for deep-out-of-the-money options where it is not 

optimal to invest at all. The deltas of all three functions approach constants as trigger 

level are reached, when the options are in-the-money. Also note that the delta changes 

most quickly at near to zero for all cases. For out-of-the money options, Fréchet has the 

highest gamma (sensitivity of delta to changes in underlying value), while Gumbel has 

the lowest gamma. This is again due to the density functions of these respective 

distributions (see Fig 1). Gumbel has a lower peak at the centre of distribution and also 

declines slower at the tail-ends. On the other hand, Fréchet is the opposite with its high 

peak in the middle of distribution and steep decay towards the end-tails. Since Fréchet 

has the highest gamma, delta hedging of options governed by Fréchet will complex. 

 

5. Conclusions 

R&D activities are high-risk investment projects and their scale of returns is dependent 

on the success in producing break-through formulae, genetic compounds or blockbuster 

drugs. Occurrences of success are often rare and extreme. We have quantified the 

expected benefits of conducting high-risk R&D by taking an extreme and conservative 

perspective to the business. Our contributions include valuing the real option to invest in 

R&D, calculating the optimal point of entry into investment, determining the trend of 

discoveries with project values and identifying the important role played by the tail-shape 

parameter. Using the statistical theory of extreme values, we explore the option values 

generated under Fréchet-, Gumbel- and Weibull-distributed discoveries. Holding asset 
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mean, variances and cost constant, we show that the upper tail-shape of the distributions 

of discoveries drives our probabilities of finding R&D success, the value of incentive to 

invest and the option to wait before investing.     

 

Our results can be summarised as follows. Depending on rational assumptions of our 

parameters, the option value to invest has shown significant difference when using 

extreme distributed R&D data as compared to Gaussian distributed R&D data. This 

reinforced the worries and difficulties of firms heavily involved in R&D activities. 

Though extreme distribution and its close counterpart like Poisson distribution have 

shown evidence that they can create high expected values upon completion of these R&D 

projects, the large trigger values suggest that they should wait further before embarking 

on investment. Also interesting to note is that our number of discoveries follows an 

inverse relationship with project values. More discoveries do not suggest higher payoffs 

partly because in R&D discoveries, being a rare commodity, can sometimes mean only 

one researcher emerges as the winner. Fréchet seems to be most sensitive to changes in 

most parameters (except volatility) in our comparative study. Since its option value is the 

highest among the three distributions, it appears to be the best distribution to fit into an 

R&D search for top drugs. The manager’s knowledge of the upper-tail shape of the 

discovery distribution should guide response on when to invest. Estimation of shape 

parameter of the distribution is a key factor. Though parameter estimation is not the focus 

of this paper, it is critical to simulate data on breakthrough emergence from the 

underlying distribution7.    

 
                                                 
7 See Reiss and Thomas (1997) on fitting observed maxima to the three-extreme-value distributions.  
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R&D has long been acknowledged to be a long, tedious and risky activity where returns 

may have fat-tailed proportions. Future research could include the uncertainty of cost in 

R&D to this paper. We can also introduce extreme value distribution into a stochastic 

process itself so as value parameters on basis of randomness rather than probabilities.  
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